Nitrate and Ammonium in Aerosols: Effects of Dust and Sea Salt

Joyce E. Penner and Y. Feng University of Michigan

DOE Atmospheric Chemistry Program February 13-15, 2001

Motivation.

- Nitrate and Ammonium are incorporated in aerosol as a result of chemical interactions with other components of the aerosol
- Inclusion of this equilibrium may lead to changes in aerosol forcing of climate especially in future scenarios where NO_x emissions may grow.
- The incorporation of nitrate in aerosol may lead to decreases in NO_x , thereby decreasing formation rates of ozone

Initial mixing ratios, January

Initial mixing ratios, July

Comparison of SO4- surface concentrations to observations

Comparison of SO4- surface concentrations to observations

Comparison of NH4- surface concentrations to observations

Comparison of NH4- surface concentrations to observations

Comparison of NO3- surface concentrations to observations

Comparison of NO3- surface concentrations to observations

Comparison of modeled and observed surface concentrations in North America EMEFS data from 1988-1990

Comparison of modeled and observed surface concentrations in Europe EMEP annual data from 1990

Fraction of nitrate in aerosol at the surface in January

with dust

with dust, seasalt

Fraction of nitrate in aerosol at the surface in July

with dust

with dust, seasalt

Dust is not included in equilibrium

Dust is included in equilibrium

Clear-sky Forcing(SAN) on TOA, JAN,

Clear-sky Forcing(SANDS) on TOA, JULY, 90 0.00 -0.00 -0.00 -0.01 30 -1.00 latitude -2.00 -5.00 -30 -10.00 -20.00 -30.00 -90 -40.00 -120 -180 -60 0 60 120 180 (Forc(SAND)-Forc(SAN))/Forc(SAN) on TOA, JULY, 90 5.00 2.00 1.00 0.50 30 0.25 latitude 0.00 -0.25 -30 -0.50 -1.00 -1.50 -90 -2.00 -180 -120 -60 0 60 120 180 (Forc(SANDS)-Forc(SAN))/Forc(SAN) on TOA, JULY 90 5.00 2.00 1.00 0.50 30 0.25 latitude 0.00 -0.25 -30 -0.50 -1.00 -1.50 -90 -2.00 -180 -120 -60 0 60 120 180

longitude

Table: Total aerosol and gas phase burdens in the atmosphere

	H2SO4	NO3-	HNO3	NH4+	NH3	Dust	SeaSalt
	(Tg S)	(Tg N)	(Tg N)	(Tg N)	(Tg N)	(Tg)	(Tg)
H2SO4+HNO3+NH3	0.62	0.12	1.34	0.28	0.38	-	-
H2SO4+HNO3+NH3 +DUST	0.62	0.16	1.34	0.26	0.38	28.83	-
H2SO4+HNO3+NH3 +DUST+SEASALT	0.62	0.25	1.34	0.26	0.38	28.83	5.15

Estimated forcing associated with different chemical representation of the aerosol (Wm⁻²)

	Forcing based on monthly-averaged-RH	Forcing based on constructed max-RH	Forcing based on daily varying RH
H2SO4	-0.45	-0.56	-0.47
H2SO4+NH3	-0.39	-0.51	-0.47
H2SO4 +NH3+HNO3	-0.42	-0.58	-0.47
H2SO4 +NH3+HNO3 +DUST	-0.40	-0.52	-0.43
H2SO4 +NH3+HNO3 +DUST+SEA SALT	-0.38	-0.50	-0.42
H2SO4 +NH3+HNO3 (Year: 2100)	-0.57	0.83	-0.62

Conclusion.

- A significant fraction of the total nitrate and ammonia are incorporated within the aerosol, especially in areas with high dust and sea salt concentrations
- This leads to an overall decrease in climate forcing compared to that calculated for sulfate aerosols alone (-0.42 Wm⁻² compared to -0.47 Wm⁻²)
- If future concentrations of NO_x emissions continue to increase, the forcing by the combined sulfate, ammonium, and nitrate aerosol may increase to $-0.62~\rm Wm^{-2}$